Three coins are tossed once. Find the probability of getting atmost two tails.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$

$\therefore$ Accordingly, $n ( S )=8$

It is known that the probability of an event $A$ is given by

$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$

Let $J$ be the event of the occurrence of at most $2$ tails.

Accordingly, $J=\{H H H,\, H H T , \,H T H ,  \,T H H , \,H T T , \,T H T , \, T T H \} ~$

$\therefore P(J)=\frac{n(J)}{n(S)}=\frac{7}{8}$

Similar Questions

A bag $x$ contains $3$ white balls and $2$ black balls and another bag $y$ contains $2$ white balls and $4$ black balls. A bag and a ball out of it are picked at random. The probability that the ball is white, is

  • [IIT 1971]

For three non impossible events $A$, $B$ and $C$ $P\left( {A \cap B \cap C} \right) = 0,P\left( {A \cup B \cup C} \right) = \frac{3}{4},$ $P\left( {A \cap B} \right) = \frac{1}{3}$ and $P\left( C \right) = \frac{1}{6}$.

The probability, exactly one of $A$ or $B$ occurs but $C$ doesn't occur is 

An anti aircraft gun take four shots at an enemy plane moving away from it. The probability of hitting the plane at the first, second, third and fourth shot are $0.4, 0.3, 0.2$ and $0.1$ respectively. The probability that the gun hit the plane is :-

Two dice are thrown. The events $A, B$ and $C$ are as follows:

$A:$ getting an even number on the first die.

$B:$ getting an odd number on the first die.

$C:$ getting the sum of the numbers on the dice $\leq 5$

Describe the events  $A$ but not $C$

A bag contains $19$ tickets numbered from $1$ to $19$. A ticket is drawn and then another ticket is drawn without replacement. The probability that both the tickets will show even number, is